Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Invest ; 53(1): 40-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38509665

RESUMO

The remarkable diversity of lymphocytes, essential components of the immune system, serves as an ingenious mechanism for maximizing the efficient utilization of limited host defense resources. While cell adhesion molecules, notably in gut-tropic T cells, play a central role in this mechanism, the counterbalancing molecular details have remained elusive. Conversely, we've uncovered the molecular pathways enabling extracellular vesicles secreted by lymphocytes to reach the gut's mucosal tissues, facilitating immunological regulation. This discovery sheds light on immune fine-tuning, offering insights into immune regulation mechanisms.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Linfócitos , Linfócitos T , Moléculas de Adesão Celular/metabolismo
2.
Vaccines (Basel) ; 11(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36992123

RESUMO

Messenger ribonucleic acid (RNA) vaccines are mainly used as SARS-CoV-2 vaccines. Despite several issues concerning storage, stability, effective period, and side effects, viral vector vaccines are widely used for the prevention and treatment of various diseases. Recently, viral vector-encapsulated extracellular vesicles (EVs) have been suggested as useful tools, owing to their safety and ability to escape from neutral antibodies. Herein, we summarize the possible cellular mechanisms underlying EV-based SARS-CoV-2 vaccines.

3.
Vaccines (Basel) ; 11(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36992152

RESUMO

It has been reported that some mutant strains of the new coronavirus escape from neutralizing antibodies acquired by recoverees and vaccine recipients, in which the Omicron strain (B [...].

4.
Membranes (Basel) ; 12(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557150

RESUMO

Extracellular vesicles (EV) are membrane vesicles surrounded by a lipid bilayer membrane and include microvesicles, apoptotic bodies, exosomes, and exomeres. Exosome-encapsulated microRNAs (miRNAs) released from cancer cells are involved in the proliferation and metastasis of tumor cells via angiogenesis. On the other hand, mesenchymal stem cell (MSC) therapy, which is being employed in regenerative medicine owing to the ability of MSCs to differentiate into various cells, is due to humoral factors, including messenger RNA (mRNA), miRNAs, proteins, and lipids, which are encapsulated in exosomes derived from transplanted cells. New treatments that advocate cell-free therapy using MSC-derived exosomes will significantly improve clinical practice. Therefore, using highly purified exosomes that perform their original functions is desirable. In this review, we summarized advances in the purification, modification, and application of EVs as novel strategies to treat some diseases.

5.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361760

RESUMO

Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Vesículas Extracelulares/metabolismo , Sistemas de Liberação de Medicamentos , Exossomos/metabolismo , Neoplasias/metabolismo
6.
Vaccines (Basel) ; 10(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36298556

RESUMO

Extracellular vesicles (EVs) produced by various immune cells, including B and T cells, macrophages, dendritic cells (DCs), natural killer (NK) cells, and mast cells, mediate intercellular communication and have attracted much attention owing to the novel delivery system of molecules in vivo. DCs are among the most active exosome-secreting cells of the immune system. EVs produced by cancer cells contain cancer antigens; therefore, the development of vaccine therapy that does not require the identification of cancer antigens using cancer-cell-derived EVs may have significant clinical implications. In this review, we summarise the molecular mechanisms underlying EV-based immune responses and their therapeutic effects on tumour vaccination.

7.
Membranes (Basel) ; 12(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736256

RESUMO

Since it has been reported that extracellular vesicles (EVs) carry cargo using cell-to-cell comminication according to various in vivo situations, they are exprected to be applied as new drug-delivery systems (DDSs). In addition, non-coding RNAs, such as microRNAs (miRNAs), have attracted much attention as potential biomarkers in the encapsulated extracellular-vesicle (EV) form. EVs are bilayer-based lipids with heterogeneous populations of varying sizes and compositions. The EV-mediated transport of contents, which includes proteins, lipids, and nucleic acids, has attracted attention as a DDS through intracellular communication. Many reports have been made on the development of methods for introducing molecules into EVs and efficient methods for introducing them into target vesicles. In this review, we outline the possible molecular mechanisms by which miRNAs in exosomes participate in the post-transcriptional regulation of signaling pathways via cell-cell communication as novel DDSs, especially small EVs.

8.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742923

RESUMO

Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa , Cordão Umbilical , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628473

RESUMO

Self-tolerance involves protection from self-reactive B and T cells via negative selection during differentiation, programmed cell death, and inhibition of regulatory T cells. The breakdown of immune tolerance triggers various autoimmune diseases, owing to a lack of distinction between self-antigens and non-self-antigens. Exosomes are non-particles that are approximately 50-130 nm in diameter. Extracellular vesicles can be used for in vivo cell-free transmission to enable intracellular delivery of proteins and nucleic acids, including microRNAs (miRNAs). miRNAs encapsulated in exosomes can regulate the molecular pathways involved in the immune response through post-transcriptional regulation. Herein, we sought to summarize and review the molecular mechanisms whereby exosomal miRNAs modulate the expression of genes involved in the immune response.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Sistemas de Liberação de Medicamentos , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Imunidade , MicroRNAs/metabolismo
10.
BMC Med ; 18(1): 343, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208172

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive, degenerative muscular disorder and cognitive dysfunction caused by mutations in the dystrophin gene. It is characterized by excess inflammatory responses in the muscle and repeated degeneration and regeneration cycles. Neutral sphingomyelinase 2/sphingomyelin phosphodiesterase 3 (nSMase2/Smpd3) hydrolyzes sphingomyelin in lipid rafts. This protein thus modulates inflammatory responses, cell survival or apoptosis pathways, and the secretion of extracellular vesicles in a Ca2+-dependent manner. However, its roles in dystrophic pathology have not yet been clarified. METHODS: To investigate the effects of the loss of nSMase2/Smpd3 on dystrophic muscles and its role in the abnormal behavior observed in DMD patients, we generated mdx mice lacking the nSMase2/Smpd3 gene (mdx:Smpd3 double knockout [DKO] mice). RESULTS: Young mdx:Smpd3 DKO mice exhibited reduced muscular degeneration and decreased inflammation responses, but later on they showed exacerbated muscular necrosis. In addition, the abnormal stress response displayed by mdx mice was improved in the mdx:Smpd3 DKO mice, with the recovery of brain-derived neurotrophic factor (Bdnf) expression in the hippocampus. CONCLUSIONS: nSMase2/Smpd3-modulated lipid raft integrity is a potential therapeutic target for DMD.


Assuntos
Distrofia Muscular de Duchenne/genética , Esfingomielina Fosfodiesterase/metabolismo , Animais , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Distrofina/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout
11.
Cell Rep ; 23(12): 3647-3657, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29925005

RESUMO

In Drosophila ovarian somatic cells (OSCs), Piwi represses transposons transcriptionally to maintain genome integrity. Piwi nuclear localization requires the N terminus and PIWI-interacting RNA (piRNA) loading of Piwi. However, the underlying mechanism remains unknown. Here, we show that Importinα (Impα) plays a pivotal role in Piwi nuclear localization and that Piwi has a bipartite nuclear localization signal (NLS). Impα2 and Impα3 are highly expressed in OSCs, whereas Impα1 is the least expressed. Loss of Impα2 or Impα3 forces Piwi to be cytoplasmic, which is rectified by overexpression of any Impα members. Extension of Piwi-NLS with an additional Piwi-NLS leads Piwi to be imported to the nucleus in a piRNA-independent manner, whereas replacement of Piwi-NLS with SV40-NLS fails. Limited proteolysis analysis suggests that piRNA loading onto Piwi triggers conformational change, exposing the N terminus to the environment. These results suggest that Piwi autoregulates its nuclear localization by exposing the NLS to Impα upon piRNA loading.


Assuntos
Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Ovário/citologia , Sequência de Aminoácidos , Animais , Proteínas Argonautas/química , Linhagem Celular , Proteínas de Drosophila/química , Feminino , Sinais de Localização Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...